КОЭФФИЦИЕНТЫ КОРРЕЛЯЦИИ ПО ПИРСОНУ КАК ХАРАКТЕРИСТИКА ИНГИБИТОРНОЙ АКТИВНОСТИ ПРОИЗВОДНЫХ ОРТО-АЛКЕНИЛФЕНОЛОВ В ВОДНО-СОЛЕВОЙ СРЕДЕ С РАЗВИВАЮЩИМИСЯ ДЕСУЛЬФАТИРУЮЩИМИ БАКТЕРИЯМИ

© 2015 A. A. Сикачина

аспирант каф. химии e-mail: sikachina@list.ru

Балтийский федеральный университет имени И. Канта

В публикуемой статье показана и проанализирована возможность взаимосвязи квантово-химических дескрипторов молекулы со скоростью коррозии стали марки Ст3, выраженной как процент защитного эффекта при микробиологической коррозии в водносолевой среде с культурой десульфатирующих бактерий, который зависит, в частности, от адсорбционных свойств молекулы, адсорбирующейся на поверхности металла.

Ключевые слова: алкенилфенолы, микробиологическая коррозия, сульфатвосстанавливающие бактерии, сталь Ст3, индексы реакционной способности, коэффициенты корреляции, Аb Initio, эффективные заряды, дипольный момент, энергии граничных орбиталей

Список принятых авторских сокращений*:

 $\Sigma_{\text{д.с.}}Q_{\text{C}}$ – суммарный заряд атомов углерода, образующих двойную связь

 $_{\rm п.п.}{\rm Q_C}$ – заряд атома углерода, образующего пара-положение бензольного кольца

 $\Sigma_6 Q_C$ — суммарный заряд атомов углерода, образующих ароматическое кольцо

₂Q_C – заряд атома углерода ароматического кольца, образующего связь C-O

 $\Sigma_{\text{т.c.}}Q_{\text{C}}$ – суммарный заряд атомов углерода, образующих тройную связь

Q₀ – заряд атома кислорода

Е взмо – энергия высшей заполненной молекулярной орбитали

Е нсмо – энергия низшей свободной молекулярной орбитали

 μ — величина дипольного момента

ИМ – исследуемая молекула

ККП – коэффициент корреляции Пирсона

Цель исследования: публикации В тему выносятся два аспекта: определение величин квантовохимическое основных индексов реакционной способности молекулы и генерирование на их основе и на основе ранее вычисленных скоростей коррозии с микробиологическим контентом (точнее, их производных: защитных эффектов) коэффициентов корреляции, служащих в целях прогноза.

Методика эксперимента: ИМ имели защитные эффекты при микробиологической коррозии в водно-солевой среде с культурой десульфатирующих бактерий, вычисленные по известным методикам [Аскарова и соавт. 2015].

Первый этап исследования — это численный эксперимент для расчета квантовохимических дескрипторов электронной структуры (индексов реакционной способности), который был проведен в программе WinGAMESS-2011 под управлением Windows XP, силами средств визуализации входной структуры (расширение .inp) программного комплекса CambridgeSoft 2013 и выходных данных (расширение .out) по

^{*} Все остальные встречающиеся сокращения общеприняты

программе Molekel 4.3/2/. Входной файл, сгенерированный с целью оптимизации геометрии входной структуры, выглядел следующим образом* (табл. 1):

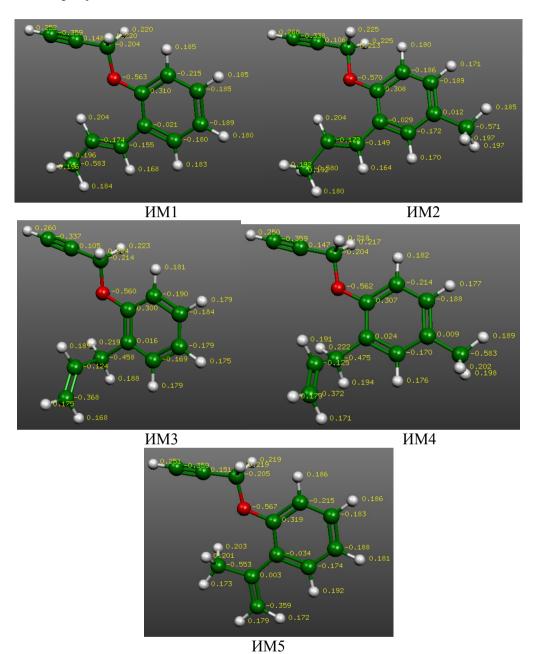
Таблица 1 Задание GAMESS для проведения оптимизации геометрии

Файл .inp	Продолжение файла	Продолжение файла	
	.inp	.inp	
! Minimize (Energy/Geometry) RHF/STO-3G	POLAR=COMMON	METHOD=QA	
\$CONTRL	\$END	NSTEP=50	
COORD=UNIQUE	\$SCF	OPTTOL=0.001	
ICHARG=1	DAMP=.false.	\$END	
MAXIT=50	DEM=.false.	\$FORCE	
MULT=1	DIIS=.false.	TEMP=298.15	
PLTORB=.TRUE.	DIRSCF=.true.	\$END	
RUNTYP=OPTIMIZE	EXTRAP=.true.	\$GUESS	
SCFTYP=RHF	NPREO(1)=1,9999,1,9999	GUESS=HUCKEL	
UNITS=ANGS	RSTRCT=.false.	\$END	
\$END	SHIFT=.false.	\$SYSTEM	
\$BASIS	SOSCF=.true.	MWORDS=10	
GBASIS=STO	\$END	\$END	
NGAUSS=3	\$STATPT		

^{*}Здесь и далее координаты атомов опускаются

Входной файл, сгенерированный с целью расчета оптимизированной структуры, выглядел следующим образом (табл. 2):

Таблица 2 Задание GAMESS для проведения собственно расчета в одной точке


Файл .inp	Продолжение файла .inp	Продолжение файла .inp	
! Compute Properties B3LYP/6-21G(d)	NGAUSS=6	\$END	
\$CONTRL	POLAR=COMMON	\$SOLVNT	
COORD=UNIQUE	\$END	IEF=3	
ICHARG=0	\$SCF	SOLVNT=H2O	
MAXIT=50	DAMP=.false.	\$END	
MULT=1	DEM=.false.	\$FORCE	
PLTORB=.TRUE.	DIIS=.false.	TEMP=298.15	
RUNTYP=OPTIMIZE	DIRSCF=.true.	\$END	
SCFTYP=RHF	EXTRAP=.true.	\$GUESS	
UNITS=ANGS	NPREO(1)=1,9999,1,9999	GUESS=HUCKEL	
\$END	RSTRCT=.false.	\$END	
\$DFT	SHIFT=.false.	\$SYSTEM	
DFTTYP=B3LYP	SOSCF=.true.	MWORDS=10	
METHOD=GRID	\$END	\$END	
\$END	\$STATPT	\$DATA	
\$BASIS	METHOD=QA		
GBASIS=N21	NSTEP=50		
NDFUNC=1	OPTTOL=0.001		

Второй этап исследования состоял в анализе величин ККП смешанных моментов, высчитаных в программе STATISTICA 7.0 так, что ККП r_j^k , выражаемые в долях от единицы, дадут возможность судить о вкладе расчетного молекулярного параметра ингибитора в его защитный эффект модельного образца указанной марки стали [Сикачина 2015б]. Были построены КК между защитным эффектом серии ингибиторов (добавляемых в коррозионную среду в концентрации 10 и 50 мг/л) и следующими дескрипторами, вычисленными указанными (табл. 2) расчетными

Сикачина А. А. Коэффициенты корреляции по Пирсону как характеристика ингибиторной активности производных орто-алкенилфенолов в водно-солевой среде с развивающимися десульфатирующими бактериями

методами: заряды на гетероатомах по Малликену, значения энергий граничных орбиталей, дипольным моментом [Там же].

Полученные величины парциальных эффективных зарядов (by Mulliken) представлены на рисунке:

Сферы зеленого цвета — атомы углерода, красного цвета — кислорода, белого цвета — водорода

Отображение зарядов на атомах исследуемых соединений в 3D-представлении Molekel 4.3

Полученные величины энергии граничных орбиталей и дипольного момента представлены в таблице 3.

Таблица 3 Отображение энергии граничных орбиталей и дипольного момента при помощи Molekel 4.3

Код ингибитора	Е взмо , а.е.э.	E _{нсмо} , a.e.э.	μ, D
ИМ1	-0,197	-0,016	1,466
ИМ2	-0,195	-0,008	1,324
ИМ3	-0,220	0,014	1,480
ИМ4	-0,203	0,005	1,343
ИМ5	-0,200	-0,023	1,782

Полученные величины ККП смешанных моментов представлены в таблице 4.

Таблица 4 Величины ККП смешанных моментов, сгенерированных STATISTICA 7.0

Защитный эффект,%	ККП «структура молекулы-антикоррозионные свойства», доли от единицы В концентрации 10 мг/л								
	$\Sigma_{\text{д.с.}} Q_{\mathrm{C}}$	п.п.QС	$\Sigma_6 Q_C$	эQc	$\Sigma_{\text{r.c.}}Q_{\text{C}}$	Q_0	E _{B3MO}	E _{HCMO}	μ
Z	0.99	-0.12	-0.09	0.71	0.01	-0.82	0.81	-0.90	0.31
Защитный эффект, %									
Z	0.99	-0.10	-0.05	0.72	0.05	-0.80	0.83	-0.90	0.28

Представленное на рисунке распределение зарядов является в целом сходным между ИМ1...ИМ5. В случае ИМ 2 и ИМ 4 заряд $_{\pi.\pi}Q_{\rm C}$ является практически нулевым, что связано с влиянием метильной группы, которая в этих ИМ появляется. В частности, это же дает самые маленькие величины μ у этих ИМ (у ИМ 1 и ИМ 2 радикал пропен-1-ил сопряжен с бензольным кольцом, что дает самый малый μ ; этот же эффект сильно уменьшает $\Sigma_{\rm д.c.}Q_{\rm C}$ в этих ИМ, а также в ИМ 5). Определенную роль в появлении именно такого μ играет метильный радикал. Атомы кислорода имеют сильный отрицательный заряд, но неподеленная 2s-электронная плотность имеет +М-эффект по отношению к ароматическому кольцу, поэтому его вклад в ингибирование коррозии сомнителен (см. ниже).

 $E_{\ B3MO}$ и $E_{\ HCMO}$ в целом довольно обычны исходя из обзора публикаций. $E_{\ HCMO}$, согласно многим исследованиям, и в частности С.А. Терюшевой [2011], должна быть при примененном уровне теории положительна, но только в ИМЗ и ИМ4 это реализуется. По-видимому, последнее связано с отсутствием сопряжения двойной связи с ароматическим кольцом. В ИМ2 радикал метил в пара-положении бензольного кольца сильно повышает величину μ , но он играет меньшую роль, поскольку при расчете ab initio $E_{\ HCMO}$ должна быть положительна.

При анализе величин ККП выявляется, что наличествует довольно много высоких положительных величин. Также выявляется практически полная схожесть величин ККП в указанных выше концентрациях, что говорит о независимости ингибирующего (и биоцидного, играющего не меньшую роль в достижении крайне высокого защитного эффекта) действия от числа молекул в объеме раствора. Благодаря наличию двойной связи осуществляется сильный вклад ее в защитный эффект ИМ, поскольку двойная связь способна стимулировать хемосорбцию соединения на металле [Терюшева 2011; Сикачина 2014]

Сикачина А. А. Коэффициенты корреляции по Пирсону как характеристика ингибиторной активности производных орто-алкенилфенолов в водно-солевой среде с развивающимися десульфатирующими бактериями

ККП вида «Z- $E_{\mbox{\tiny B3MO}}$ » и «Z- $E_{\mbox{\tiny HCMO}}$ » по модулю самые высокие среди всех , что говорит о большей зависимости эффекта применения серии производных алкенилфенолов, добавляемых в коррозионную среду, преимущественно именно от них. Анализ ККП указывает, что при повышении $E_{\mbox{\tiny B3MO}}$ (понижении первого потенциала ионизации) защитный эффект должен увеличиваться, поскольку возрастание донорных свойств ИМ влечет за собой все большую склонность к адсорбции такового на поверхности металла. Анализ ККП указывает, что при повышении $E_{\mbox{\tiny HCMO}}$ защитный эффект снижается, поскольку сродство к электрону повышается также, и снижение донорных свойств ИМ влечет за собой все меньшую склонность к адсорбции ИМ на поверхности металла.

Атом углерода с зарядом ${}_{^{3}}Q_{C}$ способствует электросорбции ИМ на поверхности металла, поскольку, согласно данным рисунка, он несет высокий положительный заряд, в то время как обеднение атома кислорода электронной плотностью делает невозможным вклад заряда Q_{O} в ингибирование коррозии (увеличение защитного эффекта). Поэтому соответствующий ККП равен -0.82. Приток 2s-электронной плотности от атома кислорода в бензольное кольцо придает вклад заряда $\Sigma_{6}Q_{C}$ равную -0.09, то есть наряду с $_{\text{п.п.}}Q_{C}$, $\Sigma_{6}Q_{C}$ является нейтральным в смысле вклада в ингибирование микробиологической коррозии, в то время как последний вносит вклад в ингибирование коррозии. То же можно сказать относительно $_{\text{п.п.}}Q_{C}$.

Таким же образом является нейтральной тройная связь, где величина ККП равна 0,01. Сравнивая ККП вида «защитный эффект- $\Sigma_{\text{т.с.}}Q_{\text{C}}$ » и ККП вида «защитный эффект- $\Sigma_{\text{б}}Q_{\text{C}}$ », можно сказать о нейтральности, но тройная связь более нуклеофильна, и ККП вида «защитный эффект- $\Sigma_{\text{т.с.}}Q_{\text{C}}$ » неотрицателен.

Очевидно, что методика вычисления ККП оправдывает себя при характеристике скорости коррозии, ингибируемой производными o-алкенилфенола. Об этом говорит в первую очередь то, что наблюдается большое количество положительных и крупных величин (что закономерно, поскольку скорость коррозии в присутствии их в водносолевой среде с десульфатирующими бактериями как ингибиторов очень резко снижается), несмотря на то что такие ККП, как «защитный эффект- Q_O » и «защитный эффект- $E_{\text{взмо}}$ », взаимно исключают действие друг друга, имея взаимно обратные величины.

Библиографический список

Аскарова Γ .*М*. Функциональнозамещенные производные алкенилфенолов в качестве ингибиторов коррозии стали СТ.3 / Γ . М. Аскарова, М.Р. Байрамов, М.А. Агаева, Г.М. Мехтиева, С. Γ . Алиева // Молодой ученый. 2015. №9. С. 70–71.

Сикачина А.А. Моделирование ингибирующих свойств уреидов и ацетилидов в отношении коррозии стали / А.А. Сикачина, Г.С. Белоглазов, С.М. Белоглазов // XII Международная научная конференция. Калининград, 2014. Ч. 1. С. 126–130

Сикачина A.A. Комплексоны-полиаминополикарбоновые кислоты: квантовохимическое и статистическое исследование молекул и их серий // Естественные и технические науки. 2015. № 6. С. 120–126

Cикачина A.A. Краткие материалы по конкретному аспекту исследования ингибиторной активности органических соединений // Тезисы докладов 69-ой Международной молодежной научной конференции «Нефть и газ — 2015». г. Москва, Россия. 2015б. Т. 2. С. 235

Терюшева С.А. Исследование производных гидрохинона и 1,4-бензохинона как ингибиторов коррозии, наводороживания стали и биоцидов на СРБ: дис. ... канд. хим. наук. Калининград, 2011. 221 с.

