UDC 519.688
DESIGNING A SERVER-SIDE SYSTEM
FOR MULTIPLAYER GAMES USING
THE ENTITY-COMPONENT-SYSTEM PATTERN

D.V. Olshevsky

4" year undergraduate student in
02.03.03 Mathematical support

and administering information systems
Kursk State University

e-mail: d.olshevskii@mail.ru

Scientific supervisor:

E.A. Zakharchuk

PhD in Linguistics, Docent,

Associate Professor

at the Department of Foreign Languages
and Professional Communication

Kursk State University

e-mail: elena_nezhura@mail.ru

The author of the article studies the development of a server-side system for a
multiplayer strategy game using the Entity-Component-System (ECS) architectural pattern.
This project aims to improve the performance and reliability of the system by ensuring
efficient synchronization of client states, data processing, and game session management.

Key words: multiplayer game, server-side system, Entity-Component-System,
synchronization, game session management.

Introduction

Currently, most multiplayer games use a centralized server that processes
all client requests and synchronizes game data. This approach is not always
optimal, as server optimization and flexibility in configuration remain at a low
level. To improve system performance and reliability, this project proposes the
use of the Entity-Component-System (ECS) architectural pattern, which allows
for efficient management of game object states and logic [Booch et al. 2008].
The ECS pattern has been widely adopted in game development due to its ability
to handle complex systems with high performance [Skypjack http].

The goal of this project is to develop the server-side of a strategy game
that ensures reliable system operation, including client state synchronization,
data processing, and game session management [Go Programming Language
Documentation http].

In accordance with the goal, the following tasks were identified:

mailto:d.olshevskii@mail.ru
mailto:elena_nezhura@mail.ru

~to analyze existing solutions for the server-side of multiplayer games,
consider architectural approaches, and formulate functional requirements
[Vendrov 2003].

~-to develop a conceptual model of the subject area, including class
diagrams, sequence diagrams, state diagrams, and activity diagrams [Booch et
al. 2008].

-to design component and deployment diagrams for the system, and
implement the client interaction interface [Visual Paradigm Tutorials http].

Analysis of Information System Requirements

One of the main tasks in developing online game applications is creating a
stable and high-performance server component that ensures efficient data
synchronization between game clients and the server. In modern multiplayer
games, it is important not only to support player interaction but also to guarantee
the safety of user data and statistics, as well as ensure system security [Vendrov
2003]. The use of databases and secure communication protocols is essential for
maintaining data integrity and preventing unauthorized access [Olypher V.,
Olypher N. 2016].

The development of the server-side for a multiplayer game requires
consideration of many factors such as high performance, security, and system
scalability. In this project, the server will ensure game state synchronization,
user management, registration, and authentication, as well as the storage of
game statistics and results. The implementation of these features is supported by
the use of advanced algorithms and data structures, which are described in detail
in [UML Specification http].

To ensure system security, user data protection and logging of user
actions during the game are provided. The most important task is data
synchronization between clients, which avoids discrepancies in game states and
ensures the fairness of the game process [Olypher V., Olypher N. 2016]. The
synchronization mechanism is implemented using efficient algorithms that
minimize latency and ensure real-time updates [UML Specification http].

Additionally, the system will implement a mechanism for finding
opponents for game sessions, allowing players to find one another based on
criteria such as game level, session availability, and preferences. All user and
statistical information will be stored in a database, ensuring security and
scalability of the solution [Skypjack http]. The database design and management
are based on best practices described in [Vendrov 2003].

Thus, the project is focused on designing an information system that not
only ensures data synchronization and game session management but also
supports reliable user interaction and a high level of optimization.

Functional Requirements

The game client information system must meet the following functional
requirements:
Synchronization of game client states and the server.
Providing the necessary data to the client.
Finding an opponent for a game session.
Saving user statistics.
User registration and authentication.

agbrwnE

The actors of the information system are presented in Table 1.

Table 1 — Actors of the Information System

Term Meaning
Administrator A user of the server application who manages the
server, including its startup and initialization
Client An external system of the client application
interacting with the server
DBMS Used for storing and processing user data, statistics,
and game resources

The use case diagram is presented in Figure 1.

3aperncTpuposats
aKKaYHT Nonb3oBaTens

MpoBoguTb Urpy

OrnpaeuTe HrpoBbie
pecypcel

MonTeepavTs BXOR
TIONL30BATENA

\
‘
\
\ <«<Include>>)/ <<Include>>
\ i

<<Include>> WckaTs onnoxeHTa
------ wara

<<Include>>

OTnpaBuTL CTATMCTIKY
~ *s
. .

. <<Include>>
.

“- ~ \
<<Include>> A . \
s S \

\

i _""’
) e
, e
’ ’-‘
N ~ I Pid
o ~o ’ e
WHmumanuaaums
cepeepa

AImusvcTpaTop

Figure 1 — Use Case Diagram

Textual Scenarios

Use Case «Initialize Server»
The process of preparing the server system for operation, including loading all
necessary modules and data.

Reqular Flow
Actor Actions System Actions
1. Administrator starts the system. 2. The system loads the server

configuration and necessary modules.
Error Flow E1. Error when loading modules*

3. The system reports that the server is

ready for operation.

6. The use case ends.

*Error Flow E1. Error when loading modules

Actor Actions System Actions
1. Display an error message about
module loading failure.

2. Administrator debugs the module

operation.

3. The use case ends.

Use Case «Register User Account»
This allows the client to create a new account in the system using an email and
password.

Regular Flow

Actor Actions System Actions

1. Client sends registration data (email, 2. The system checks the registration
password) to the server. data in the database.

Error Flow E1. Invalid registration data*
3. The system creates a new account
and saves the data in the database.
4. The system sends a successful
registration result.

5. Client receives a response from the

system about successful authorization.

6. The use case ends.

*Error Flow E1. False registration data

Actor Actions System Actions
1. The system sends an error message
about registration failure.

2. The application receives a response

from the server about the error.
3. The use case ends.

Use Case «Authenticate User»
This allows the client to authenticate in the system using a login and password.

Reqular Flow

Actor Actions System Actions

1. Client sends authentication data to 2. The system checks the
the server. authentication data in the database.

Error Flow E1. Invalid authentication data*
3. The system returns a positive
verification result and authenticates the
user in the system.

4. The use case ends.

*Error Flow E1. Invalid authentication data

Actor Actions System Actions
1. The system sends an error message
about authentication failure.

2. Client receives a response from the

server about the error,

3. The use case ends.

Use Case «Find Match Opponent»
This allows the client to find opponents for a game session.

Regular Flow

Actor Actions System Actions

1. Client sends a request to the server 2. The system accepts the request and

to find an opponent for a game session. starts the process of finding an
opponent for the game session.

Alternative Flow Al. Error in the process of finding an opponent for the game

session*

3. Activation of game systems and
synchronization.
4. Start of the game session.

5. The use case ends.

*Alternative Flow Al. Could not find an opponent for the game session

Actor Actions System Actions
1. The system sends an error message
to the client.

2. The application receives a response
from the server about the error.
3. The use case ends.

Use Case «Conduct Game)
This allows the client to conduct the game process for users.
Reqular Flow
Actor Actions System Actions
1. Client sends changes in the game 2. Processing of game events in real-
session in the form of a special time.
container.

3. Checking the conditions for ending
the game session

Alternative Flow Al. The game session is not finished*

Alternative Flow A2. The game session is finished**

4. The use case ends.

*Alternative Flow Al. The game session is not finished

Actor Actions System Actions
1. The system sends the result of
processing game events.

2. Client receives a response from the

server about the game session state.

3. The use case ends.

**Alternative Flow A2. The game session is finished

Actor Actions System Actions
1. The system ends the game session.
2. The system updates user data in the
database.
2. The system sends information about
the end of the game session to the
client.

4. Client receives a response from the

server about the game session state.

5. The use case ends.

Use Case «Send Statistics»
This allows the client to receive data about user statistics and progress.

Reqular Flow
Actor Actions System Actions
1. Client sends a request to receive 2. The system processes the request to

statistics. receive statistics.

Alternative Flow Al. Error in the process of sending statistics*
3. The system sends the statistics data
to the client.

4. Client receives a response from the

server.

5. The use case ends.

*Alternative Flow Al. Error in the process of sending statistics
Actor Actions System Actions
1. The system sends an error message
about the failure to execute the request.
2. Client receives a response from the
server.
3. The use case ends.

Use Case «Send Game Resources)
This allows the client to receive game resources.

Reqular Flow

Actor Actions System Actions

1. Client sends a request to receive 2. The system processes the request to
game resources. receive game resources.

Alternative Flow Al. Error in the process of sending game resources*
3. The system sends the packed game
resources to the client.

4. Client receives a response from the

Server.

5. The use case ends.

*Alternative Flow Al. Error in the process of sending game resources
Actor Actions System Actions
1. The system sends an error message
about the failure to execute the request.
2. Client receives a response from the
server.
3. The use case ends.

The main objects of the system are presented in Table 2 below.

Table 1 — The main objects of the system

Term Meaning

A module that implements game logic and controls the process

Game session emulator

of conducting game sessions. It processes the actions of the
players, checks the correctness of game moves, updates the
game state and transmits the results of the game session to the
server for saving.

Account

A container for storing user information during the registration
process. It is required for transferring data to the database.

Player information

A container for storing information about the user during the
game, such as the characteristics of the game character, etc. is
necessary to verify the correctness of game actions by the
server.

Game resources

A container for storing game resources and sending them to the
client on request, such as a game card, etc.

Server configuration

A container for storing system startup parameters, necessary
for server initialization

Completeness and Consistency Check

The correspondence of the use case diagram to the functional
requirements is presented in Table 3.

Table 3 — Completeness Check

Initialize Send Send Register Authentic | Conduct Find
Game - User Match
Server Statistics ate User | Game
Resources Account Opponent
Synchronization + +
Data Provision + +
Opponent +
Search
Statistics
. +
Saving
Registration &
. . + +
Authentication

The consistency check of use cases is presented in Table 4.

Table 4 — Consistency Check

Objects
Game
Use case
Account | Player Info Session Game Servgr .
Resources | Configuration

Emulator
Initialize Server 1,3
Send Game

1,3

Resources
Send Statistics 1,2,3,4
Register User 1,2.3 4
Account

Authenticate User | 1,2, 3,4

Conduct Game 2,3,4 1,3,4

Find Match 5
Opponent

In Table 4, the following operations are denoted:
1 — Create;

2 — View;

3 — Update;

4 — Delete.

Design of the Information System

Based on the system description, the following relationships were
identified:

~Server. The main object that contains tools for processing client
requests, such as user registration, authentication, data sending, finding
opponents for game sessions, and conducting game sessions.

- Client Connection: A set of tools for establishing and maintaining an
internet connection between the Server and the client.

- Terminal: An interface that allows the administrator to make changes to
the Server's operation.

- Game_Session: Contains sets of components associated with Game
Entities through Pools and Systems that modify components. This subsystem is
necessary for implementing the game process emulation.

- Account: A container for transferring user data between modules.

- Player Info: A container for transferring the user's state in the game
session.

Based on the technical specification, the attributes presented in Table 5
were identified.

Table 5 — Attributes of the Subject Area Objects

Class Attributes

Server Configuration System operation parameters
Account User account data

Information about user actions and characteristics during the game
Player Info .

session
Game Resources Container for game resources
Game Session Emulator Information about the game session

Conclusion

During the project, the server side of the strategy game was designed
using the Entity-Component-System (ECS) architectural template. The system
provides state synchronization between game clients and the server, manages
game sessions, stores user statistics, and provides user registration and

authentication functions. A conceptual domain model was developed to clearly
structure and understand the logic of the system.

In conclusion, we can say that the project meets the stated functional
requirements, reflects the relevance of the designed information system,
including integration with the database, providing all the necessary features for
the full functioning of the online game.

References

Booch, G., Rumbaugh, J., & Jacobson, I.The Unified Modeling
Language User Guide. Moscow: DMK Press, 2008. ISBN 5-94074-334-X.

Go Programming Language Documentation [Website].
URL.: https://go.dev/doc/ (accessed 17.02.2025).

Olypher, V., & Olypher, N.Computer Networks: Principles,
Technologies, Protocols. St. Petersburg: Peter, 2016.

Skypjack. Entity-Component-System (ECS) Articles [Website]. —
URL.: https://skypjack.github.io/2019-02-14-ecs-baf-part-1/ (accessed
19.02.2025).

UML Specification. Official UML 2.5.1 Specification [Website]. —
URL.: https://www.omg.org/spec/UML/2.5.1/ (accessed 22.02.2025).

Vendrov, A. M. Designing Software for Economic Information Systems. —
Moscow: Finance and Statistics, 2003. 347 p.

Visual Paradigm Tutorials [Website]. URL: https://www.visual-
paradigm.com/tutorials/ (accessed 17.02.2025).

10

https://go.dev/doc/
https://skypjack.github.io/2019-02-14-ecs-baf-part-1/
https://www.omg.org/spec/UML/2.5.1/
https://www.visual-paradigm.com/tutorials/
https://www.visual-paradigm.com/tutorials/

YK 519.688

PA3PABOTKA CEPBEPHOM CUCTEMBI 1J151
MHOI'OIIOJIB3OBATEJIBCKHUX UI'P C UCITIOJIB3OBAHUEM
IHABJIOHA ENTITY-COMPONENT-SYSTEM

/1. B. Onvuiesckuii
cmyoenm 4 Kypca Hanpagienus no020moeKu
02.03.03 «Mamemamuueckoe obecneuenue u

Aomunucmpuposarue uHGOPMAYUOHHBIX CUCTEM»
Kypckuii cocyoapcmeennwiii ynusepcumem
e-mail: d.olshevskii@mail.ru

Hayunwiii pyxosooumens:
E.A. 3axapuyk

Kawnouoam Guion. Hayk, OoyeHm,

0oyeHm Kagpeopvl UHOCMPAHHBIX A3bIKOG
U npoeccuoHanbHOU KOMMYHUKAYUU
Kypckuii cocyoapemeennwiil ynugepcumem
e-mail: elena_nezhura@mail.ru

Aemop cmamoi usyuaem pazpabomky cepeepHoll cucmembl ons
MHO2ONONb308AMENbCKOU CIMPAMESUYECKOl Uepbl € UCHOAb308AHUEM APXUMEKMYPHO20
wabnona Entity-Component-System (ECS). Lenvto dannozo npoexma a6nsaemcs nosviuienue
npoOU3B0OUMENbHOCMU U HAOEHCHOCMU CUcCmemsbl 3a cyem obecnedenusi 3p@exmusHot
CUHXPOHU3AYUU COCMOAHULL KIUEHMO8, 00pabomKu OAHHBIX U YAPAGIEHUs USPOGLIMU
ceccusimu.

Kntouesvle cnosa: munozononvzosamenvckas uepa, cepsepuas cucmema, CyuwHocms-
KOMNOHEHM-CUCmemMda, CUHXPOHU3AYUL, YAPABIEeHUE USPOBLIMU CECCUSIMU.

bubnuozpaguueckuii cnucox

Benopos A.M. llpoekTupoBaHHe€ MPOrPpaMMHOIO OOECIICUCHUS
HKOHOMHUYECKUX MH(DOPMAIIMOHHBIX cucTeM. M.: @uHAHCHI U cTaTucTuka, 2003.
347 c.

Booch, G., Rumbaugh, J., & Jacobson, I|. The Unified Modeling
Language User Guide. Moscow: DMK Press, 2008. ISBN 5-94074-334-X.

Go Programming Language Documentation [Website].
URL.: https://go.dev/doc/ (nara obpamenuns: 17.02.2025).

Olypher, V., & Olypher, N.Computer Networks: Principles,
Technologies, Protocols. St. Petersburg: Peter, 2016.

Skypjack. Entity-Component-System (ECS) Articles [Website]. —
URL.: https://skypjack.github.io/2019-02-14-ecs-baf-part-1/ (mata oOparieHus:
19.02.2025).

UML Specification. Official UML 2.5.1 Specification [Website]. —
URL.: https://www.omg.org/spec/UML/2.5.1/ (nata odparenus: 22.02.2025).

11

mailto:d.olshevskii@mail.ru
mailto:elena_nezhura@mail.ru
https://go.dev/doc/
https://skypjack.github.io/2019-02-14-ecs-baf-part-1/
https://www.omg.org/spec/UML/2.5.1/

Visual Paradigm Tutorials [Website]. URL.: https://www.visual-
paradigm.com/tutorials/ (mara o6pamenus: 17.02.2025).

12

https://www.visual-paradigm.com/tutorials/
https://www.visual-paradigm.com/tutorials/

