
  
1 

 

  

UDC 519.688 

DESIGNING A SERVER-SIDE SYSTEM  

FOR MULTIPLAYER GAMES USING  

THE ENTITY-COMPONENT-SYSTEM PATTERN   

  

D.V. Olshevsky 
4

rd
 year undergraduate student in 

02.03.03 Mathematical support  

and administering information systems  

Kursk State University 

e-mail: d.olshevskii@mail.ru 

 

Scientific supervisor: 

Е.А. Zakharchuk 
PhD in Linguistics, Docent, 

Associate Professor 

at the Department of Foreign Languages 

 and Professional Communication 

Kursk State University 

e-mail: elena_nezhura@mail.ru  

 

 

The author of the article studies the development of a server-side system for a 

multiplayer strategy game using the Entity-Component-System (ECS) architectural pattern. 

This project aims to improve the performance and reliability of the system by ensuring 

efficient synchronization of client states, data processing, and game session management. 

Key words: multiplayer game, server-side system, Entity-Component-System, 

synchronization, game session management. 

 

 

Introduction 

Currently, most multiplayer games use a centralized server that processes 

all client requests and synchronizes game data. This approach is not always 

optimal, as server optimization and flexibility in configuration remain at a low 

level. To improve system performance and reliability, this project proposes the 

use of the Entity-Component-System (ECS) architectural pattern, which allows 

for efficient management of game object states and logic [Booch et al. 2008]. 

The ECS pattern has been widely adopted in game development due to its ability 

to handle complex systems with high performance [Skypjack http]. 

The goal of this project is to develop the server-side of a strategy game 

that ensures reliable system operation, including client state synchronization, 

data processing, and game session management [Go Programming Language 

Documentation http]. 

In accordance with the goal, the following tasks were identified: 

mailto:d.olshevskii@mail.ru
mailto:elena_nezhura@mail.ru


  
2 

 

  

 to analyze existing solutions for the server-side of multiplayer games, 

consider architectural approaches, and formulate functional requirements 

[Vendrov 2003]. 

 to develop a conceptual model of the subject area, including class 

diagrams, sequence diagrams, state diagrams, and activity diagrams [Booch et 

al. 2008]. 

 to design component and deployment diagrams for the system, and 

implement the client interaction interface [Visual Paradigm Tutorials http]. 

 

Analysis of Information System Requirements 

One of the main tasks in developing online game applications is creating a 

stable and high-performance server component that ensures efficient data 

synchronization between game clients and the server. In modern multiplayer 

games, it is important not only to support player interaction but also to guarantee 

the safety of user data and statistics, as well as ensure system security [Vendrov 

2003]. The use of databases and secure communication protocols is essential for 

maintaining data integrity and preventing unauthorized access [Olypher V., 

Olypher N. 2016]. 

The development of the server-side for a multiplayer game requires 

consideration of many factors such as high performance, security, and system 

scalability. In this project, the server will ensure game state synchronization, 

user management, registration, and authentication, as well as the storage of 

game statistics and results. The implementation of these features is supported by 

the use of advanced algorithms and data structures, which are described in detail 

in [UML Specification http]. 

To ensure system security, user data protection and logging of user 

actions during the game are provided. The most important task is data 

synchronization between clients, which avoids discrepancies in game states and 

ensures the fairness of the game process [Olypher V., Olypher N. 2016]. The 

synchronization mechanism is implemented using efficient algorithms that 

minimize latency and ensure real-time updates [UML Specification http]. 

Additionally, the system will implement a mechanism for finding 

opponents for game sessions, allowing players to find one another based on 

criteria such as game level, session availability, and preferences. All user and 

statistical information will be stored in a database, ensuring security and 

scalability of the solution [Skypjack http]. The database design and management 

are based on best practices described in [Vendrov 2003]. 

Thus, the project is focused on designing an information system that not 

only ensures data synchronization and game session management but also 

supports reliable user interaction and a high level of optimization. 

 

 

Functional Requirements 



  
3 

 

  

The game client information system must meet the following functional 

requirements: 

1. Synchronization of game client states and the server. 

2. Providing the necessary data to the client. 

3. Finding an opponent for a game session. 

4. Saving user statistics. 

5. User registration and authentication. 

  

The actors of the information system are presented in Table 1. 

 

Table 1 – Actors of the Information System 

Term Meaning 

Administrator A user of the server application who manages the 

server, including its startup and initialization 

Client An external system of the client application 

interacting with the server 

DBMS Used for storing and processing user data, statistics, 

and game resources 

 

The use case diagram is presented in Figure 1. 

 

 
Figure 1 – Use Case Diagram 

 

Textual Scenarios 



  
4 

 

  

Use Case «Initialize Server» 

The process of preparing the server system for operation, including loading all 

necessary modules and data. 

 

Regular Flow 

Actor Actions System Actions 

1. Administrator starts the system. 2. The system loads the server 

configuration and necessary modules. 

Error Flow E1. Error when loading modules* 

 3. The system reports that the server is 

ready for operation. 

6. The use case ends. 

 

*Error Flow E1. Error when loading modules 

Actor Actions System Actions 

 1. Display an error message about 

module loading failure. 

2. Administrator debugs the module 

operation. 

 

3. The use case ends. 

 

Use Case «Register User Account» 

This allows the client to create a new account in the system using an email and 

password. 

 

Regular Flow 

Actor Actions  System Actions 

1. Client sends registration data (email, 

password) to the server. 

2. The system checks the registration 

data in the database. 

Error Flow E1. Invalid registration data* 

 3. The system creates a new account 

and saves the data in the database. 

 4. The system sends a successful 

registration result. 

5. Client receives a response from the 

system about successful authorization. 

 

6. The use case ends. 

 

*Error Flow E1. False registration data 

Actor Actions System Actions 

 1. The system sends an error message 

about registration failure. 

2. The application receives a response  



  
5 

 

  

from the server about the error. 

3. The use case ends. 

 

Use Case «Authenticate User» 

This allows the client to authenticate in the system using a login and password. 

 

Regular Flow 

Actor Actions System Actions 

1. Client sends authentication data to 

the server. 

2. The system checks the 

authentication data in the database. 

Error Flow E1. Invalid authentication data* 

 3. The system returns a positive 

verification result and authenticates the 

user in the system. 

4. The use case ends. 

 

*Error Flow E1. Invalid authentication data 

Actor Actions System Actions 

 1. The system sends an error message 

about authentication failure. 

2. Client receives a response from the 

server about the error. 

 

3. The use case ends. 

 

Use Case «Find Match Opponent» 

This allows the client to find opponents for a game session. 

 

Regular Flow 

Actor Actions System Actions 

1. Client sends a request to the server 

to find an opponent for a game session. 

2. The system accepts the request and 

starts the process of finding an 

opponent for the game session. 

Alternative Flow A1. Error in the process of finding an opponent for the game 

session* 

 3. Activation of game systems and 

synchronization. 

 4. Start of the game session. 

5. The use case ends. 

 

*Alternative Flow A1. Could not find an opponent for the game session 

Actor Actions System Actions 

 1. The system sends an error message 

to the client. 



  
6 

 

  

2. The application receives a response 

from the server about the error. 

 

3. The use case ends. 

 

Use Case «Conduct Game» 

This allows the client to conduct the game process for users. 

Regular Flow 

Actor Actions System Actions 

1. Client sends changes in the game 

session in the form of a special 

container. 

2. Processing of game events in real-

time. 

 3. Checking the conditions for ending 

the game session 

Alternative Flow A1. The game session is not finished* 

Alternative Flow A2. The game session is finished** 

4. The use case ends. 

 

*Alternative Flow A1. The game session is not finished 

Actor Actions System Actions 

 1. The system sends the result of 

processing game events. 

2. Client receives a response from the 

server about the game session state. 

 

3. The use case ends. 

 

**Alternative Flow A2. The game session is finished 

Actor Actions System Actions 

 1. The system ends the game session. 

 2. The system updates user data in the 

database. 

 2. The system sends information about 

the end of the game session to the 

client. 

4. Client receives a response from the 

server about the game session state. 

 

5. The use case ends. 

 

Use Case «Send Statistics» 

This allows the client to receive data about user statistics and progress. 

 

Regular Flow 

Actor Actions System Actions 

1. Client sends a request to receive 2. The system processes the request to 



  
7 

 

  

statistics. receive statistics. 

Alternative Flow A1. Error in the process of sending statistics* 

 3. The system sends the statistics data 

to the client. 

4. Client receives a response from the 

server. 

 

5. The use case ends. 

 

*Alternative Flow A1. Error in the process of sending statistics 

Actor Actions System Actions 

 1. The system sends an error message 

about the failure to execute the request. 

2. Client receives a response from the 

server. 

 

3. The use case ends. 

 

Use Case «Send Game Resources» 

This allows the client to receive game resources. 

 

Regular Flow 

Actor Actions System Actions 

1. Client sends a request to receive 

game resources. 

2. The system processes the request to 

receive game resources. 

Alternative Flow A1. Error in the process of sending game resources* 

 3. The system sends the packed game 

resources to the client. 

4. Client receives a response from the 

server. 

 

5. The use case ends. 

 

*Alternative Flow A1. Error in the process of sending game resources 

Actor Actions System Actions 

 1. The system sends an error message 

about the failure to execute the request. 

2. Client receives a response from the 

server. 

 

3. The use case ends. 

 

The main objects of the system are presented in Table 2 below. 

 

Table 1 – The main objects of the system 
Term Meaning 

 A module that implements game logic and controls the process 



  
8 

 

  

 

Game session emulator 

of conducting game sessions. It processes the actions of the 

players, checks the correctness of game moves, updates the 

game state and transmits the results of the game session to the 

server for saving. 

 

Account 

A container for storing user information during the registration 

process. It is required for transferring data to the database. 

 

Player information 

A container for storing information about the user during the 

game, such as the characteristics of the game character, etc. is 

necessary to verify the correctness of game actions by the 

server. 

Game resources A container for storing game resources and sending them to the 

client on request, such as a game card, etc. 

Server configuration A container for storing system startup parameters, necessary 

for server initialization 

 

Completeness and Consistency Check 

 

The correspondence of the use case diagram to the functional 

requirements is presented in Table 3. 

 

Table 3 – Completeness Check 

 
Initialize 

Server 

Send 

Game 

Resources 

Send 

Statistics 

Register 

User 

Account 

Authentic

ate User 

Conduct 

Game 

Find 

Match 

Opponent 

Synchronization +     +  

Data Provision  + +     

Opponent 

Search 
      + 

Statistics 

Saving 
     +  

Registration & 

Authentication 
   + +   

 

 

The consistency check of use cases is presented in Table 4.  

 

Table 4 – Consistency Check 

Use case 

Objects 

Account Player Info 

Game 

Session 

Emulator 

Game 

Resources 

Server 

Configuration 

Initialize Server     1, 3 

Send Game 

Resources 
   1, 3  

Send Statistics 1, 2, 3, 4     

Register User 

Account 
1, 2, 3, 4     



  
9 

 

  

Authenticate User 1, 2, 3, 4     

Conduct Game  2, 3, 4 1, 3, 4   

Find Match 

Opponent 
2     

In Table 4, the following operations are denoted:  

1 – Create; 

2 – View; 

3 – Update; 

4 – Delete. 

 

Design of the Information System 

Based on the system description, the following relationships were 

identified: 

 Server: The main object that contains tools for processing client 

requests, such as user registration, authentication, data sending, finding 

opponents for game sessions, and conducting game sessions. 

 Client Connection: A set of tools for establishing and maintaining an 

internet connection between the Server and the client. 

 Terminal: An interface that allows the administrator to make changes to 

the Server's operation. 

 Game Session: Contains sets of components associated with Game 

Entities through Pools and Systems that modify components. This subsystem is 

necessary for implementing the game process emulation. 

 Account: A container for transferring user data between modules. 

 Player Info: A container for transferring the user's state in the game 

session. 

Based on the technical specification, the attributes presented in Table 5 

were identified. 

 

Table 5 – Attributes of the Subject Area Objects 
Class Attributes 

Server Configuration System operation parameters 

Account User account data 

Player Info 
Information about user actions and characteristics during the game 

session 

Game Resources Container for game resources 

Game Session Emulator Information about the game session 

 

Conclusion 

During the project, the server side of the strategy game was designed 

using the Entity-Component-System (ECS) architectural template. The system 

provides state synchronization between game clients and the server, manages 

game sessions, stores user statistics, and provides user registration and 



  
10 

 

  

authentication functions. A conceptual domain model was developed to clearly 

structure and understand the logic of the system.  

In conclusion, we can say that the project meets the stated functional 

requirements, reflects the relevance of the designed information system, 

including integration with the database, providing all the necessary features for 

the full functioning of the online game. 

 

References 

 

Booch, G., Rumbaugh, J., & Jacobson, I. The Unified Modeling 

Language User Guide. Moscow: DMK Press, 2008. ISBN 5-94074-334-X. 

Go Programming Language Documentation [Website]. 

URL: https://go.dev/doc/ (accessed 17.02.2025). 

Olypher, V., & Olypher, N. Computer Networks: Principles, 

Technologies, Protocols. St. Petersburg: Peter, 2016. 

Skypjack. Entity-Component-System (ECS) Articles [Website]. – 

URL: https://skypjack.github.io/2019-02-14-ecs-baf-part-1/ (accessed 

19.02.2025). 

UML Specification. Official UML 2.5.1 Specification [Website]. – 

URL: https://www.omg.org/spec/UML/2.5.1/ (accessed 22.02.2025). 

Vendrov, A. M. Designing Software for Economic Information Systems. – 

Moscow: Finance and Statistics, 2003. 347 p. 

Visual Paradigm Tutorials [Website]. URL: https://www.visual-

paradigm.com/tutorials/ (accessed 17.02.2025). 

 

 

 

  

https://go.dev/doc/
https://skypjack.github.io/2019-02-14-ecs-baf-part-1/
https://www.omg.org/spec/UML/2.5.1/
https://www.visual-paradigm.com/tutorials/
https://www.visual-paradigm.com/tutorials/


  
11 

 

  

УДК 519.688 

 

РАЗРАБОТКА СЕРВЕРНОЙ СИСТЕМЫ ДЛЯ 

МНОГОПОЛЬЗОВАТЕЛЬСКИХ ИГР С ИСПОЛЬЗОВАНИЕМ 

ШАБЛОНА ENTITY-COMPONENT-SYSTEM 

 

Д.В. Ольшевский 
студент 4 курса направления подготовки  

02.03.03 «Математическое обеспечение и  

Администрирование информационных систем»  

Курский государственный университет 

e-mail: d.olshevskii@mail.ru  

 

Научный руководитель: 

Е.А. Захарчук 
кандидат филол. наук, доцент, 

доцент кафедры иностранных языков 

и профессиональной коммуникации 

Курский государственный университет  

e-mail: elena_nezhura@mail.ru  

 

Автор статьи изучает разработку серверной системы для 

многопользовательской стратегической игры с использованием архитектурного 

шаблона Entity-Component-System (ECS). Целью данного проекта является повышение 

производительности и надежности системы за счет обеспечения эффективной 

синхронизации состояний клиентов, обработки данных и управления игровыми 

сессиями. 

Ключевые слова: многопользовательская игра, серверная система, Сущность-

компонент-система, синхронизация, управление игровыми сессиями. 
 

Библиографический список 

 

Вендров А.М. Проектирование программного обеспечения 

экономических информационных систем. М.: Финансы и статистика, 2003. 

347 с. 

Booch, G., Rumbaugh, J., & Jacobson, I. The Unified Modeling 

Language User Guide. Moscow: DMK Press, 2008. ISBN 5-94074-334-X. 

Go Programming Language Documentation [Website]. 

URL: https://go.dev/doc/ (дата обращения: 17.02.2025). 

Olypher, V., & Olypher, N. Computer Networks: Principles, 

Technologies, Protocols. St. Petersburg: Peter, 2016. 

Skypjack. Entity-Component-System (ECS) Articles [Website]. – 

URL: https://skypjack.github.io/2019-02-14-ecs-baf-part-1/ (дата обращения: 

19.02.2025). 

UML Specification. Official UML 2.5.1 Specification [Website]. – 

URL: https://www.omg.org/spec/UML/2.5.1/ (дата обращения: 22.02.2025). 

mailto:d.olshevskii@mail.ru
mailto:elena_nezhura@mail.ru
https://go.dev/doc/
https://skypjack.github.io/2019-02-14-ecs-baf-part-1/
https://www.omg.org/spec/UML/2.5.1/


  
12 

 

  

Visual Paradigm Tutorials [Website]. URL: https://www.visual-

paradigm.com/tutorials/ (дата обращения: 17.02.2025). 

 

 

https://www.visual-paradigm.com/tutorials/
https://www.visual-paradigm.com/tutorials/

