СИСТЕМЫ КРАЕВЫХ ЗАДАЧ И СИНГУЛЯРНЫХ ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ В СТАТИЧЕСКОЙ ТЕОРИИ УПРУГОСТИ

© 2013 Л. П. Римская¹, Е. Ю. Скородулина²

¹канд. физ.-мат .наук, доцент каф. информационных технологий и высшей математики e-mail: lilirimska@yandex.ru

ФГБОУ ВПО «Смоленская ГСХА»

²канд. физ.-мат .наук, доцент каф. экономики

ФГБОУ ВПО «Смоленский филиал РГТЭУ»

В работе изучаются системы сингулярных интегральных уравнения, характеристическая часть которых соответствует основным краевым задачам теории упругости для однородных изотропных тел. Прилагается общий метод регуляризации сингулярных интегральных уравнений. Рассчитывается их индекс.

Ключевые слова. Сингулярное уравнения, уравнение Фредгольма, теория упругости.

В данной работе предлагается единый метод решения краевых задач для полианалитических функций и связанных с ними систем сингулярных интегральных уравнений, построенных на основе первой задачи теории упругости для изотропного тела; рассматриваются его некоторые приложения.

Начало теории сингулярных интегральных уравнений с ядром Коши было положено работами А. Пуанкаре (по теории приливов) и Д. Гильберта (по краевым задачам) почти непосредственно вслед за созданием классической теории интегральных уравнений Фредгольма.

Основные результаты были получены тогда, когда к исследованию сингулярных интегральных уравнений были привлечены результаты решения краевых задач теории функций комплексного переменного.

На сегодняшний день принято рассматривать сингулярные интегральные уравнения в тесной связи с соответствующими их характеристическим частям краевыми задачами. Причем если обычные сингулярные уравнения эффективно приводятся к уравнениям Фредгольма (регуляризуются) с помощью задачи Римана (метод регуляризации Карлемана — Векуа), то решение более сложных краевых задач (задачи Римана для нескольких неизвестных функций, многоэлементные задачи и т.д.) удобно свести к решению соответствующих систем сингулярных интегральных уравнений.

К краевым задачам для нескольких неизвестных функций можно отнести и краевые задачи для полианалитических функций.

Определение [Юденков, Володченков 2013]. Функция F(z), заданная в некоторой области $D \subset \overline{C}$, называется полианалитической функцией порядка n, если она представима в виде

$$F_n(z) = \sum_{k=0}^{n-1} \overline{z}^k \varphi_k(z), \tag{1}$$

где $\phi_k(z)$ (k = 0, ..., n - 1) – аналитические функции в D, $\overline{z} = x - iy$.

Интерес к полианалитическим функциям возник благодаря работам Г.В. Колосова и Н.М. Мусхелишвили, в которых было показано, что эффективным средством для решения задач плоской теории упругости могут служить функции следующего вида [Мусхелишвили 1966]:

$$F(z) = \varphi_0(z) + \overline{z}\varphi_1(z). \tag{2}$$

Несложно заметить, что, согласно определению 1, указанную функцию следует отнести к полианалитическим функциям второго порядка или бианалитическим функциям.

Известно, что решение первой основной задачи теории упругости можно свести к решению следующей краевой задачи:

$$\frac{\partial F}{\partial x} = -\frac{\overline{\partial F}}{\partial x} + g_1(t),$$

$$\frac{\partial F}{\partial y} = \frac{\overline{\partial F}}{\partial y} + ig_2(t),$$
(3)

где F(z) – искомая бианалитическая функция в некоторой области D, ограниченной контуром $L; t \in L; g_k (k = 1, 2)$ – заданные на контуре L функции.

Пользуясь представлением (2), краевую задачу (3) можно переписать следующим образом:

$$\begin{split} &\phi_0{}'(t) + \bar{t}\phi_1{}'(t) + \phi_1(t) = -[\bar{\phi}_0{}'(t) + \bar{t}\phi_1{}'(t) + \phi_1(t)] + g_1(t), \\ &\phi_0{}'(t) + \bar{t}\phi_1{}'(t) - \phi_1(t) = [\overline{\phi_0{}'(t) + \bar{t}\phi_1{}'(t) - \phi_1(t)}] + g_2(t). \end{split} \tag{4}$$

В 1949 г. Ф.Д. Гахов [1977], опираясь на краевую задачу (3), сформулировал ряд краевых задач для полианалитических функций, которые обобщали задачи теории упругости. С этого времени теория краевых задач развивалась многими российскими и зарубежными математиками.

В то же время вопрос о системах сингулярных уравнений, соответствующих краевым задачам для полианалитических функций, оставался практически неразработанным. В работе [Юденков 2002] были сформулированы системы сингулярных уравнений, характеристические части которых соответствуют краевым задачам для полианалитических функций.

Рассмотрим систему сингулярных интегральных уравнений.

Пусть L – простой замкнутый контур класса $\,C_{\mu}^{(3)}\,,\,$ ограничивающий конечную область D.

Требуется определить неизвестные функции $\omega_1(t)$ и $\omega_2(t)$ из системы интегральных уравнений

$$\begin{split} (K_{1}\omega_{1}\omega_{2})(t) &= a_{1}(t)[\omega_{1}(t) + \bar{t}\omega_{2}'(t) + \omega_{2}(t)] + \frac{d_{1}(t)}{\pi i} \int_{L} \frac{\omega_{1}(\tau) + \bar{t}\omega_{2}'(\tau) + \omega_{2}(\tau)}{\tau - t} d\tau + \\ &+ \int_{L} K_{11}(t,\tau)\omega_{1}(\tau)d\tau + \int_{L} K_{12}(t,\tau)\omega_{2}(\tau)d\tau = f_{1}(t), \\ (K_{2}\omega_{1}\omega_{2})(t) &= a_{2}(t)[\omega_{1}(t) + \bar{t}\omega_{2}'(t) - \omega_{2}(t)] + \frac{d_{2}(t)}{\pi i} \int_{L} \frac{\omega_{1}(\tau) + \bar{t}\omega_{2}'(\tau) - \omega_{2}(\tau)}{\tau - t} d\tau + \\ &+ \int_{L} K_{21}(t,\tau)\omega_{1}(\tau)d\tau + \int_{2} K_{22}(t,\tau)\omega_{2}(\tau)d\tau = f_{2}(t), \end{split}$$

где $K_{\mathit{ln}}(t,\tau)$ \in $H^{(1)}_*(L \times L)$; $a_{\mathit{l}}(t), d_{\mathit{l}}(t)$ \in $H^{(3-\mathit{l})}(L), f_{\mathit{l}}(t)$ \in $H^{(1)}(L)$ $(\mathit{l}, n$ = 1, 2).

Будем считать, что уравнения системы нормированы, то есть

$$a_I^2(t) - d_I^2(t) = 1.$$

Проведем преобразования:

$$(K_{1}\omega_{1}\omega_{2})(t) = a_{1}[\omega_{1}(t) + \bar{t}\omega_{2}'(t) + \omega_{2}(t)] + \frac{d_{1}(t)}{\pi i} \int_{L} \frac{\omega_{1}(\tau) + \bar{\tau}\omega_{2}'(\tau) + \omega_{2}(\tau)}{\tau - t} d\tau + \int_{L} K_{11}(t,\tau)\omega_{1}(\tau)d\tau + \int_{L} K_{12}^{*}(t,\tau)\omega_{2}(\tau)d\tau = f_{1}(t),$$

$$(K_{2}\omega_{1}\omega_{2})(t) = a_{2}[\omega_{1}(t) + \bar{t}\omega_{2}'(t) - \omega_{2}(t)] + \frac{d_{2}(t)}{\pi i} \int_{L} \frac{\omega_{1}(\tau) + \bar{\tau}\omega_{2}'(\tau) - \omega_{2}(\tau)}{\tau - t} d\tau + \int_{L} K_{21}(t,\tau)\omega_{1}(\tau)d\tau + \int_{2} K_{22}^{*}(t,\tau)\omega_{2}(\tau)d\tau = f_{2}(t),$$

$$(6)$$

где $K_{l,2}(t,\tau) = K_{l,2}(t,\tau) + \frac{d_l(t)}{\pi i} \frac{\bar{t} - \bar{\tau}}{t - \tau}.$

Индекс характеристической части (6) совпадает с индексом характеристической части (5). Для его определения введем вспомогательные функции

$$W_{1}(t) = \omega_{1}(t) + \bar{t}\omega_{2}'(t) + \omega_{2}(t),$$

$$W_{2}(t) = \omega_{1}(t) + \bar{t}\omega_{2}'(t) - \omega_{2}(t).$$
(7)

С учетом обозначений (7) характеристическая часть системы (6) примет вид

$$(K_{1}^{*}W_{1}W_{2})(t) = a_{1}(t)W_{1}(t) + \frac{d_{1}(t)}{\pi i} \int_{L} \frac{W_{1}(\tau)d\tau}{\tau - t} = f_{1}^{*}(t),$$

$$(K_{2}^{*}W_{1}W_{2})(t) = a_{2}(t)W_{2}(t) + \frac{d_{2}(t)}{\pi i} \int_{L} \frac{W_{2}(\tau)d\tau}{\tau - t} = f_{2}^{*}(t).$$
(8)

Система (8) представляет собой два обычных характеристических уравнения относительно неизвестных функций $W_1(t)$ и $W_2(t)$. Индекс данной системы определяется по формуле

Jnd
$$K^* = Jnd K = K_1 + K_2,$$
 (9)

где
$$K_l = \operatorname{Jnd} \frac{a_l(t) - d_l(t)}{a_l(t) + d_l(t)}$$
.

Предложенный метод исследования систем сингулярных уравнений имеет два достоинства. Первое — данный метод не опирается на определенный вид контура, поэтому применим к любому достаточно гладкому контуру. Второе — исследование системы сингулярных уравнений, соответствующих краевым задачам для полианалитических функций, сводится к исследованию системы из обычных сингулярных уравнений.

Библиографический список

Юденков А.В., Володченков А.М. Основные задачи теории упругости тел с прямолинейной анизотропией в стохастической теории потенциала // Ученые записки: электронный научный журнал Курского государственного университета. 2013. № 2 (26) [Сайт]. URL: http://scientific-notes.ru/pdf/030-002.pdf

Гахов Ф.Д. Краевые задачи. М.: Наука. 1977.

Мусхелишвили Н.И. Некоторые основные задачи математической теории упругости. М.: Наука. 1966.

Юденков А.В. Краевые задачи со сдвигом для полианалитических функций и их приложения к вопросам статической теории упругости. Смоленск. Смядынь. 2002.